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1 Introduction

The modern society constantly needs facilities for people transport and car-
riage of goods. Public transport services don’t provide the required flexibility,
dynamism and timeliness, so people prefer to use private means of transport,
e.g. cars. This leads to traffic congestion in big cities and reduces population
quality of life due to air and sound pollution.

This work deals about innovative transport systems that make the most of
available resources, trying in same time to meet the requirements of every
single customer. In particular it will focus on the emerging Dial a Ride
system which represents an interesting solution to the problem described
above. A fleet of vehicles, without fixed routes and schedules, carries people
from the desired pickup point to the desired delivery point, during a pre-
specified time interval. The customers demand the service in calling a central
unit and in specifying: the desired pick-up and delivery points (respectively,
origin and destination), the number of passengers and some limitations on
the service time (e.g., the earliest departure time or the latest arrival time).
The central unit processes the requests, plans the vehicle routes and tells
each customer if his request has been accepted or rejected. The planning of
routes in a system like this is a vehicle routing and scheduling problem and
needs a proper algorithm to be solved.

Due to their high complexity, these problems have been tacked in literature
mainly through heuristic algorithms; in this work a granular tabu search
heuristic will be used for the first time to solve the Dial a Ride problem. A
system able to deal with all the main versions of this problem will be realized:
customers can ask for the service in advance (off-line version) or call during
the service time (on-line version); moreover the features of the road network
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the problem is modeled on can be considered constant (non time-dependent
version) or variable as a consequence of different traffic volumes during the
day (time-dependent version). The system will prove to be effective and
efficient in all conditions: for this reason, through some future developments,
it will be possible to use it for practical applications in a real context.

The document is organized as follows: Section 2 describes the main features
of the vehicle routing and scheduling problems and the algorithms proposed
in literature to solve them; Section 3 formalizes the Dial a Ride problem;
Section 4 describes the algorithm realized in details; finally, Section 5 presents
computational results and conclusions.

2 Vehicle routing and scheduling problems

A vehicle routing problem models every situation in which some vehicles have
to serve a set of requests. For each request there are two points in the space:
they have to be visited by a vehicle and a service (for example load or unload
of goods or people) has to be carried out there [1].

Routing problems have different kinds of constraints. There are capacity
constraints if the vehicle providing the service has a finite load capacity:
routes (which include load and unload points) have to be planned so that
the maximum capacity is never exceeded.

In many cases, the vehicles are not available during the whole day and every
point of a request has a time window indicating when the service has to be
carried out [2]. A routing problem with these time constraints becomes a
routing and scheduling problem.

A problem is called many-to-many if there are different pick-up and delivery
points for all the requests; on the contrary if the pick-up (or delivery) point
is always the same the problem is one-to-many (many-to-one).

To solve a routing and scheduling problem a subset of requests is chosen and
assigned to each vehicle; then for each vehicle a route passing through all the
points of the selected requests is constructed [3]. The solution composed by
all the routes has to respect the constraints of the problem and to optimize
one or more features like the duration or length of the routes, the number
of vehicles, the travel time, the customer satisfaction or the profit of the
company providing the service [2].

There are different kinds of routing and scheduling problems : a complete and
accurate classification, as in [4], is far from the aims of this work, so only
their main features will be presented here.
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A vehicle routing problem is a static optimization problem when all the in-
formation required for its solution are available before the start of the res-
olution process [5][2]. On the contrary, in many real cases it’s necessary to
use a model based on a dynamic optimization problem: solutions must be
found while time proceeds, concurrently with incoming information. This
means that no a-priori solution can be found; nevertheless at the start of the
optimization process it’s possible to chose a strategy specifying what actions
should be taken as a function of the system state [6].

Most of the models described in literature for vehicle routing problems are
not time-dependent : they assume constant travel times during the day on the
road network. In fact travel times between fixed points vary during the day,
so time-dependent network models have been proposed: travel time depends
not only on the distance traveled but also on the time of the day. Different
speed are considered at different hours: in this way it’s possible to take into
account the traffic volume variations during the day [7][8][9].

2.1 Main problems

The routing and scheduling problems are always modeled on a graph. A
graph G = (N,A) consists of a set of vertices (or nodes) N and a set of arcs
(or edges) A. Each element a of A connects two elements i and j of N . If
each arc a is an ordered pair of nodes, the graph is directed. A sequence of
consecutive edges connecting two vertices is called path. A graph is connected
if there is a path for each pair of nodes. Finally a graph is strongly connected
if there is an arc between each pair of nodes. Vertices and edges may have
weights indicating for example distances or travel times.

Two different kinds of graph will be considered:

• physical graph: it’s a model of the road network the considered problem
is defined on. There’s a node for every interesting place and an arc for
each road between these places.

• abstract graph: it is used for the mathematical formulation of routing
and scheduling problems; there’s a node for every request point and
arcs represent the shortest paths between them.

The main routing problems described in literature are:

• Traveling Salesman Problem (tsp): it’s the problem of a salesman who
has to visit his customers minimizing the travel cost. A single vehicle
starts from the depot, reaches some nodes and then comes back to the
depot; there are no time or precedence constraints.
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• Multiple Traveling Salesman Problem (m-tsp): it’s a tsp with a mul-
tiple vehicle fleet. The set of requests is divided into subsets and each
of them is served by a vehicle. Every route starts and ends at the de-
pot. Often one of the problem’s objectives is to minimize the number
of used vehicles.

• Vehicle Routing Problem (vrp): it’s the m-tsp where a demand is
associated with each customer and each vehicle has a finite capacity.
The demands may be all loads or all unloads; vehicle loads must not
exceed vehicle maximum capacities.

• Pick-up and Delivery Problem (pdp): it’s a many-to-many version of
the vrp. Each request has a source point where some goods have to
be picked up and a destination point where they have to be delivered.
For this reason there’re both capacity and precedence constraints.

These routing problems become routing and scheduling problems if all the
request points have a time window.

2.1.1 Dial a Ride Problem

Demand-responsive transportation systems use vehicles whose routes and
schedules change dynamically on the basis of the actual requests of users. By
better exploiting vehicle capacity, they try to offer the comfort and flexibility
of private cars and taxis at a lower cost. The Dial a Ride (dar) is the
more complete and flexible of these systems; it is suited to service sparsely
populated areas, densely populated areas during weak demand periods or
special classes of passengers with specific requirements (elderly, disabled).

The Dial a Ride can be modeled as a routing and scheduling problem with
time windows almost like the pdptw; the only difference is the object of the
transport, that is people in dar and goods in pdptw.

Figure 1 represents the main elements defining the structure of a Dial a Ride
system. The fleet is the group of vehicles available, defined by the service
time, their capacity and the depot they belong to. The requests describe
the customer demand with the origin and destination points, the number
of passengers and the earliest departure time (or latest arrival time). The
constraints regard the maximum capacity of the vehicles, that cannot be
exceeded, and the precedence in visiting the pick-up point of each request
before visiting its delivery point. Moreover some constraints assure the cus-
tomers a minimum quality of service, avoiding them to wait too long before
the pick-up and providing them with a trip as short as possible. Finally
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Figure 1: Structure of a Dial a Ride system.

the objectives : the Dial a Ride involves different interests and requirements.
Customers are interested in a good quality of service, the company providing
the service would like low running costs, while the public administration is
interested in a service available in every places of the region. For these rea-
sons different conflicting objectives have to be considered: the maximization
of the quality of service, the minimization of the number of used vehicles,
the maximization of the number of served customers.

2.2 Solution of a static routing and scheduling problem

The vehicle routing and scheduling problems can be solved using techniques
based on two different approaches: exact and heuristic ones. Exact methods
compute every possible solution until one of the best ones is reached, while
heuristic methods produce good (non optimal) solutions within short time.

Exact methods are based on implicit enumeration algorithms like dynamic
programming, branch and bound and column generation.

In [10] and [11] two exact methods based on dynamic programming and
column generation are proposed for the single-vehicle dar and the pdptw
resolution. These methods are unable to solve problems with several requests.

All the vehicle routing and scheduling problems have very high complexity;
as a matter of fact Savelsbergh [12] proved that the tsptw is an NP-hard
problem. This means, as a consequence, that both vrptw and dar are
NP-hard.
The results of the work mentioned above show that, due to this high com-
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plexity, exact methods can’t deal with large problems and thus are useless
for real life applications. For this reason the research focused on heuristic
methods which can be divided into two main groups: classical heuristic and
metaheuristic algorithms.

2.2.1 Classical heuristic algorithms

Classical heuristics have been developed starting from 1960 and up to 1990 [13].
They are very simple and are based on both theory and common sense rules.
Heuristic algorithms perform a relatively limited exploration of the search
space and typically produce good quality solutions within modest computing
times.

Constructive methods These methods gradually build a feasible solution
while keeping an eye on its cost, but do not contain an improvement phase
per se; they generate routes inserting request one at a time. They may be
sequential if a route has to be completed before opening a new one, or parallel
if many paths are constructed at the same time [14][15].

These methods can also follow a different approach in which two phases are
considered: a clustering phase creates sets of requests that can be served by
a single vehicle, a routing phase constructs the actual routes. Algorithms
based on this approach are called cluster-first, route second or route-first,
cluster second depending on the execution order of the two phases.

Interesting solutions using constructive methods have been proposed in [16][17]
and [18].

Improvement methods Improvement methods try to optimize a solution
made up of feasible routes and obtained for example through a constructive
method. Most of the improvement methods for vehicle routing and schedul-
ing problems are local research algorithms. They are based on the concept of
neighborhood of a solution that is the set of all the feasible solutions reachable
from it through a local transformation (move) [18][15]. A move is performed
through an exchange: the position of one or more vertices in one or more
routes is changed, therefore some arcs are removed from the solution while
other ones are added to it. Figures 2 and 3 show the possible exchanges
involving two arcs.

There are two neighborhood exploration strategies: first-accept, according to
which the current solution is replaced by the first solution found having a
better objective function value, and best-accept, according to which all the
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Figure 3: Exchange involving 2 arcs between two routes.

neighborhood’s solutions are tested and then the one causing the maximum
improvement is selected [14].

2.2.2 Metaheuristic algorithms

Many metaheuristic algorithms have been proposed and successfully used in
the last decade [19]. These techniques differ from classical heuristics because
they accept worsening and unfeasible solutions during the research process.
In this way these methods perform a deep exploration of the most promising
regions of the solution space, trying not to stop at the occurrence of the
first local minimums. Metaheuristics produce better solutions than classical
heuristics do.

The main elements of some famous metaheuristics applied to vehicle routing
and scheduling problems are described in the following paragraphs; for a
complete and in-depth analysis of all the methods refer to [20].

Ant Colonies Systems The Ant Colony System (acs) algorithms are
based on a computational paradigm inspired by the way real ant colonies
function. Ants communicate information regarding shortest path to food
through pheromone trails they create when moving on the ground. While an
isolated ant moves practically at random, an ant encountering a previously
laid trail can detect it and decide, with high probability, to follow it, thus
reinforcing the trail with its own pheromone. For this reason, after a short
time the best paths are marked with a high level of pheromone.

This led to a computational paradigm in [21] for the resolution of optimiza-
tion NP-hard problems. Ants are represented by simple computational
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agents which individually and iteratively explore the solution space. The
objective function value depends on many elements, including the level of
the trails followed by the agents (ants).

Interesting acs algorithms have been proposed for the resolution of the
tsp [21][22], the vrp [23][24][25] and the vrptw [26].

Genetic Algorithms Genetic Algorithms (ga) employ the mechanics of
natural selection and natural genetics to evolve solutions to problems. They
don’t work with a single solution but evolve a population of candidate solu-
tions by creating new generations of offspring. Each solution is encoded as a
string of bits (chromosomes) and has a fitness function indicating its repro-
duction probability. Mutation and crossover may follow the reproduction of
the solutions: a single bit of a string is changed or whole sequences of bits
are swapped between solutions.

For solving a vehicle routing and scheduling problem, each solution is rep-
resented by one chromosome which is a chain of integers, each of them rep-
resenting a customer or a vehicle. Mutation and crossover must be de-
fined so that the problem’s constraints are always respected after every
change [27][28].

Genetic Algorithms have been successfully used mainly for the tsp resolu-
tion [27]; in [29] a vrptw is solved through an hybrid system based on a
genetic algorithm and a greedy heuristic.

Simulated and Deterministic Annealing The Simulated Annealing (sa)
derives from the statistical mechanics. It is based on an analogy from the
annealing process of solids: a solid is heated to a high temperature and then
gradually cooled in order for it to crystallize in a low energy configuration.

The energy level represents the objective function, while temperature T in-
dicates the dimension of the portion of solution space the algorithm can ex-
plore. The solution is modified step by step through random perturbations;
changes improving the objective function value are always accepted, worsen-
ing changes are accepted with probability e−

∆

T . The algorithm starts with a
high T value; then it is gradually reduced according to a cooling scheduling
(which also defines the algorithm’s stopping criteria).

The Deterministic Annealing (da) differs from the Simulated Annealing be-
cause of its deterministic rule for the changes acceptance.

Some interesting sa algorithms for the vrp [30] and the vrptw [31] have
been proposed in literature.
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Tabu Search The Tabu Search (ts) metaheuristic, invented by Glover [32][33],
performs a deep exploration of the solution space, allows worsening solutions
and thus tries to escape from local minimums. The optimization process
starts from an initial solution usually built through a constructive heuristic.
At each iteration of the algorithm the best move1 of the current neighborhood
is selected and executed. To avoid cycling a memory called tabu list is used:
all the solutions that have been recently visited are classified as forbidden
(tabu) for some iterations (tabu tenure). A forbidden move can be executed
if it leads to a solution with an objective function value better than any other
found during the research process (aspiration criteria). In order to improve
the effectiveness of the ts method, intensification and diversification tech-
niques try to focus the research on promising portions of the solution space
or to move it to other ones [34].

Many different algorithms exploiting the Tabu Search method have been
proposed for the vrp [35][19]; just some of the most interesting ideas and
algorithms proposed for the solution of several vehicle routing and scheduling
problems are presented here:

• In [36] an Adaptive Memory Procedure is used to solve both the vrp
and the vrptw. A set of good solutions is created during the research
process; at intervals some elements (representing the vehicle routes)
are taken from this set and recombined to build a better solution. This
technique can be seen as a diversification strategy if used during the
optimization process or as an intensification strategy if used at the end
of it.

• In [37] an interesting ts algorithm for the dar is described. The pre-
sented research process allows unfeasible solutions through some penal-
izations on the objective function. Moreover an effective diversification
technique based on the frequency of moves execution is introduced.

• The Granular Tabu Search (gts) proposed in [38] is a promising version
of the standard ts: it provides solutions almost as good as the ones pro-
duced by ts but requires less computation time. This is achieved using
a drastically restricted neighborhood (granular neighborhood) obtained
from the standard one by removing the moves that involve only ele-
ments which are not likely to belong to high-quality feasible solutions.
The authors applied this technique to the vrp; they observed that arcs
whose length is higher than a granularity threshold are not likely to

1The move leading to the best solution reachable from the current one.
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Figure 4: Evolution of heuristics

belong to high quality solutions and thus should not be considered in
the research process.

2.2.3 Conclusions

The choice of the optimization algorithm to be used in this work for the dar
problem was based on the analysis of the presented resolution methods for
the static vehicle routing and scheduling problems. In particular the Granular
Tabu Search was chosen due to its great efficiency and applied for the first
time to the dar. We tried to realize an algorithm both effective and efficient,
following the evolution of the vrp heuristic resolution techniques described
in [19] and shown in Figure 4.

In this way it was possible to deal with all the dar problem’s versions, static
and dynamic, time-dependent and not time-dependent.

2.3 Solution of a dynamic routing and scheduling prob-

lem

Most of the algorithms for the resolution of dynamic routing and scheduling
problems make use of the approaches described for the static ones. In partic-
ular real-time context requires the generation of solutions within short time,
thus heuristics and metaheuristics become absolutely necessary [39][3], while
exact methods are useless [40].
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The resolution of a dynamic routing and scheduling problem requires the def-
inition of a strategy indicating which actions have to be performed depending
on the current state of the system. It says how a dynamic problem can be
split into a set of static sub-problems which will be solved separately [6].

The simplest strategy is called Single Event Optimization: a new static prob-
lem is defined every time an event occurs; an event can be the occurrence of
a new request or the end of service at a customer location. Each sub-problem
contains all the unserviced requests known at the current time. The opera-
tion of a system based on this strategy is shown in Figure 5: the optimization
procedure (which can be a ts applied to a dynamic vrptw [41] or dynamic
pdptw [42]) solves the series of static problems running between couples of
events [6].

Many other strategies have been proposed, including First Come First Served
policy, Stochastic Queue Median policy, Nearest Neighbor policy and tsp
policy [43].

2.4 Solution of a time-dependent routing and schedul-

ing problem

Time-dependent vehicle routing and scheduling problems are based on net-
work models according to which the time needed to go from a node to an-
other one changes during the day. Due to different traffic volumes at different
hours, the travel time between two locations depends on both the distance
and the departure time [8].

Time-dependent problems can be solved using the same algorithms described
in 2.2, but suitable techniques and a time-dependent network model are
needed to properly compute travel times.

In most of the time-dependent models the horizon of interest is discretized
into small time intervals (or time fences) [8][9][7]. Then travel time [8] or
speed [9][7] for each network’s arc is assumed to be step function of the
starting time at the origin node. In this way these models try to approximate
real world conditions where travel times vary continuously over time.
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All the models based on discrete travel times and many of those based on
discrete speeds proved to be ineffective as they don’t respect the fifo prop-
erty [7]. This property, also known as non-passing property (npp), implies
that two vehicles traveling on the same network’s arc will arrive at its end
in the same order as they start, even if some congestion occurs during the
travel.

Ichoua, Gendreau and Potvin suggested a time-dependent network model
consistent with the npp [7]: the main point is that they do not assume a
constant speed over the entire length of an arc; rather speed changes when the
boundary between two time intervals is crossed. Figure 6 shows the distance
run over arc (i, j) by a vehicle starting at ti in time interval T1 and arriving
at tj in time interval T2. The authors provided a travel time calculation
procedure that was also used in [44] for a modified Dijkstra algorithm able
to compute shortest paths on time-dependent networks.

3 Dial a Ride problem definition

This section formalizes the dar problem and presents the procedures used to
obtain all the information required for its solution (time windows, distances
and travel times between request points).

3.1 DAR problem formulation

Let U = {1 . . . n} be a set of requests (customers). For each request i two
nodes (i+ and i−) are defined: a load qi must be taken from i+ to i−. Let
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N+ = {i+|i ∈ U} be the set of pick up nodes and N− = {i−|i ∈ U} denotes
the set of delivery nodes. A positive amount qi+ = qi is associated to the
pick up node, a negative amount qi− = −qi to the delivery node. A time
window is also associated to each node, both to a pick up node [ei+ , li+ ] and
to a delivery node [ei− , li− ]. The fleet of vehicles is denoted as M ; all vehicles
have the same capacity Q and time window [e0, l0].

Let G (N,A) be a directed graph, whose set of vertices is defined as N =
N+ ∪ N− ∪ {0}, where node 0 represents the vehicle depot. The set of
arcs A is defined as A = {(i, j) : i, j ∈ N, i 6= j} and each arc (i, j) ∈ A has
associated a distance di,j, a travel time ti,j and a cost function ci,j. Another
set E = {(i, j) : i, j ∈ N+ ∪N−, i 6= j} represents the subset of arcs whose
extremes are customer nodes.

The problem is to find a set of routes starting and ending at the depot, such
that all the customers are satisfied and the pick up node of each customer
is visited before the delivery node. Moreover, the solution should be feasible
with respect to the capacity and the time window constraints. The variables
xmi,j are equal to 1 if vehicle m uses arc (i, j) ∈ A and equal to 0 otherwise;
pi represents the departure time from node i ∈ N+ ∪ N−; yi is the load of
the vehicle leaving node i. The problem’s constraints are:

∑

m∈M

∑

j∈N

xmi,j ≤ 1 ∀i ∈ N+ (1)

∑

j∈N

xmi,j −
∑

j∈N

xmj,i = 0 ∀m ∈M, ∀i ∈ N+ ∪N− (2)

∑

j∈N

xmi+,j −
∑

j∈N

xmi−,j = 0 ∀m ∈M, ∀(i+, i−) ∈ N+ ∪N− (3)

xmi,j(yi + qj) ≤ yj ∀m ∈M, ∀ (i, j) ∈ E (4)

qi ≤ yi ≤ Q ∀i ∈ N+ (5)

0 ≤ yi ≤ Q− qi ∀i ∈ N− (6)

xmi,j(pi + ti,j) ≤ pj ∀m ∈M, ∀ (i, j) ∈ E (7)

ei ≤ pi ≤ li ∀i ∈ N (8)

pi+ + ti+,i− ≤ pi− ∀i =
(
i+, i−

)
∈ N+ ∪N− (9)

xmi,j ∈ {0, 1} ∀m ∈M, ∀ (i, j) ∈ A (10)

The first three groups of constraints ensure that each customer is serviced
by at most one vehicle. Indeed, constraints (1) make sure that, at most,
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one vehicle exits from each origin node i+, constraints (2) impose that the
number of vehicles entering and exiting each node be the same, and con-
straints (3) that the same vehicle, if any, visits the pickup and the delivery
node. Constraints (4), (5) and (6) ensure the feasibility of the loads. The
number of passengers in a given vehicle varies according to the number of
people boarding it or getting off it. The maximum capacity of the vehicle
cannot be exceeded. The last three classes of constraints impose the feasibil-
ity of the schedule. Constraints (7) represent the compatibility requirements
between routes and schedules. Constraints (8) ensure that the departure
time takes place during the time window: when the vehicle arrives at node
i before ei the driver must wait; it is unfeasible to arrive at node i after li.
Finally, constraints (9) imply that for each trip the delivery node is visited
after the pickup node. Constraints (7) and constraints (4) can be linearized
respectively as M(1− xmij ) ≥ pi+ tij − pj and M(1− xmij ) ≥ yi+ qj − yj. The
former equations are a generalization of the classical TSP subtour elimination
constraints proposed by Miller, Tucker and Zemlin [45].

3.1.1 Objective function

As shown in 2.1.1, Dial a Ride involves different interests and requirements,
thus is a multi-objective optimization problem. The usual concept of optimal
solution does not apply directly in the multi-objective case. Two kinds of
solution can be found: dominated solutions, whose objective function values
are all worse than another solution’s ones, and Pareto optimal (efficient)
solutions, which have a better value for at least one of the objective functions.

A positively weighted convex sum of the objectives has been minimized to
solve the dar problem described in this work:

min (α1f1 + α2f2 + α3f3) (11)

The weights α1, α2 and α3 are assigned decreasing values.

The primary objective has to guarantee that many customers can make use
of the service; the number of served requests is given by

∑

i∈N+

∑

m∈M

∑

j∈N

xmi,j (12)

thus the first term of the objective function2 is

f1 =
|U | −∑

i∈N+

∑
m∈M

∑
j∈N xmi,j

|U | (13)

2The value has been normalized between 0 and 1.
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The second objective tries to meet the company’s expectations minimizing
the number of vehicles used. The value is normalized between 0 and 1:

f2 =

∑
m∈M

∑
j∈N+ x

m
0,j

|M | (14)

Finally the third term of the objective function measures the average level of
service (los) over the set of serviced customers. It is given by the difference
between the service time offered by the dar system for the trip (that includes
travel times and waiting times) and the minimum time the customer would
need to go from the origin i+ to the destination i− [1]. More precisely, the
los for customer i is defined as

losi =
Di+ +

∑i−−1
k=i+ tk,k+1 +

∑i−

k=i+ wk

ti+,i−
(15)

whereDi+ is the departure delay and wk are the waiting times. The minimum
value of losi is reached when the vehicle departs from i− at time ei− , while
the maximum one is reached when the vehicle leaves node i− at the end of
the time window (li−). This means that the normalized los for customer i
can be defined as [1]

losi =
pi− − ei−

li− − ei−
(16)

so the third term to be considered in the objective function is

f3 =

∑
i∈N+

∑
m∈M

∑
j∈N

(
xmi,jlosi

)
∑

i∈N+

∑
m∈M

∑
j∈N xmi,j

(17)

3.2 Time windows computation

The time windows computation process must guarantee that a vehicle moving
from i+ to i− breaks no constraint. Moreover the service time offered by the
dar system for a trip should be quite as short as the one the customer would
need to go directly3 from the origin to the destination.

Let mwt be the maximum waiting time at the origin point of a request and
maxlos a measure of the minimum level of service granted to a customer4.

3That is ti+,i− and can be obtained following the shortest path.
4maxlos depends on the minimum travel time ti+,i− ; many different functions can be

used, like exponential or step functions.
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Figure 7: Time windows computation procedure for a customer specifying
ei+

The user can specify the earliest departure time e+
i or the latest arrival time

l−i ; in first case, time windows are defined as follows [1]:





ei+ = ei+

li− = ei+ +maxlos · ti+,i−
ei− = ei+ + ti+,i−

li+ = min (ei+ + mwt, li− − ti+,i−)

(18)

Figure 7 shows this procedure.

Time windows of customers specifying the latest arrival time li− are instead
defined in this way:





li− = li−

ei+ = li− −maxlos · ti+,i−
ei− = ei+ + ti+,i−

li+ = min (ei+ + mwt, li− − ti+,i−)

(19)

3.3 Distances and travel times computation

An abstract graph has been used to formulate the dar problem in 3.1. Each
arc (i, j) of this graph connects couples of request points and is defined by
two values: the minimum distance di,j and the minimum travel time ti,j .
These information come from the physical graph.

The procedure is described in Figures 8 and 9, which show physical and
abstract graphs with the latter having distances di,j on each arc. Nodes 1
and 9 are the first request’s origin and destination points, while nodes 4 and
8 are the second request’s ones.

Travel time ti,j can not be determined without further information regarding
the network.
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3.3.1 Shortest paths

Several shortest path algorithms have been proposed in literature [46][47],
however it’s an hard task to say which is the best one as their performances
depend on a lot of elements, including the features of the problem they are
applied to.

There are two classes of algorithms to solve shortest path problems: label-
setting and label-correcting algorithms. Both the algorithms are iterative and
assign tentative distance labels to nodes at each step, which are estimates of
the upper bounds on the shortest path distances. Label setting algorithms
designate one label as permanent (optimal) at each iteration. Label correct-
ing algorithms consider the labels as temporary until the final step when they
all become permanent.

One algorithm for each class has been used in this work: the Dijkstra algo-
rithm (label-setting) and the Pape-Levit version of the Bellman-Ford-Moore
algorithm (label-correcting). As a matter of fact, Dijkstra algorithm (as well
as any other label-setting one) can be very efficient when a one-to-one short-
est path is required as the procedure can be stopped when the destination
node is reached and definitively labelled. The Bellman-Ford-Moore algorithm
implemented using a dequeue data structure (Pape-Levit version) proved to
be very efficient when applied to sparse networks [46] in spite of its not so
good worst-case computational complexity [47].

3.3.2 Minimum travel time paths

The speed for each arc of the graph is required in order to compute travel
times over the network. The simplest solution is to consider constant speed
for every arc: in this way shortest paths are also minimum travel time paths.
The time required for a trip can be determined dividing the distance by the
constant speed.

Unfortunately this solution does not suit to real networks consisting of many
kinds of road; in fact fastest paths are not always the shortest ones. For this
reason the graph’s arcs should be divided into C groups (or categories [7]),
each of them having different speed vc, with c ∈ [1, . . . , C].

The algorithms described in 3.3.1 can still be used: the weight of each arc is
now equal to its length divided by the speed of the category it belongs to.
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3.3.3 Time-dependent network case

Time-dependent network conditions add another complication to the mini-
mum travel time paths calculation due to the varying traffic volumes.

Many time-dependent network models have been presented in 2.4; the fifo
model described in [7] has been used in this work since other solutions does
not provide reliable results in practice.

The horizon of interest is discretized into K time intervals. Each arc of the
graph (or category of arc) is given a different speed for each time interval
Fk = [tk, tk], k ∈ [1, . . . , K].

The arrival time at node j starting from node i at time t̃ ∈ Fk can be
determined using the following function [7][44]:

Function ArrivalTime

Begin

remainingDistance = cij − vcFk
∗ (tk − t̃)

while remainingDistance > 0
k = k + 1
remainingDistance = remainingDistance− vcFk

∗ (tk − ik)
return (tk + remainingDistance/vcFk

)
End

assuming that arc (i, j) belongs to category c and its speed is vcFk
.

Each node’s label is equal to the earliest time that node can be reached, thus
using this procedure the shortest path algorithms presented in 3.3.1 are still
usable on time-dependent graphs. In this way even minimum travel times
of trips taking place during more than one time interval can be correctly
computed.

3.4 Handling of time window constraints

Time windows are among the most difficult constraints to handle in local
research procedures, which are the core of most heuristics for vehicle rout-
ing problems. A typical approximation algorithm generates a neighborhood
applying some moves (usually arc exchanges) to the current solution. Then,
it substitutes the current solution with another one chosen from its neigh-
borhood. This can be done pursuing profitability (classical local research)
or using different strategies which can accept also worse solutions (for ex-
ample Tabu Search, Simulated Annealing, etc.). In any case, local search
algorithms visit a large number of solutions whose feasibility and value they
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have to estimate. Applying a straightforward evaluation takes a time O(n),
which affects any algorithm requiring such a test.

Savelsbergh [12] proved that, if solutions are explored in a given order, this
goal can be achieved by calculating suitable quantities and updating them
each time a new solution is considered. This takes only a constant time O(1),
which is a great saving.

In [48] an evolution of Savelsbergh’s method to handle solutions is proposed:
the idea is to reduce the original graph contracting entire sequences of nodes
into objects (macronodes) with a limited number of properties summing up
all the information needed to evaluate solutions. The new graph is much like
the old one, that is a time window is associated to each macronode, a travel
time to each arc.

The advantages of this framework are:

• a very simple and general way to evaluate feasible neighborhood solu-
tions;

• a lower computational effort: less operations are needed to evaluate
each new solution, as a consequence of a neater mathematical formal-
ism;

• macronodes’ properties are unrelated to the solution they belong to:
when it changes, most macronodes keep unchanged. Moreover, they
are independent from the neighborhood structure and from how it is
explored.

This method has been used in this work to efficiently evaluate solutions.
However it does not hold when time-dependent network models are used:
travel times between nodes may vary if sequences are changed, thus macron-
odes’ properties computed considering the current solution are not valid to
evaluate all the neighborhood solutions.

The method has been therefore further developed in this work to deal with
time-dependent problems: given the current solution, the only macronodes
computed and saved are the sequences of nodes belonging to the same time
interval5. If the main algorithm requires information regarding a sequence
which does contain nodes belonging to different time intervals, that sequence
is split into known macronodes. The travel times over arcs crossing the
boundary between two time intervals are computed for each solution evalu-
ation; then they are used to combine the known macronodes and obtain the
needed information.

5A set of criteria has been defined to decide whether a node belongs to a given time
interval, according to its time window and position in the route.
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4 The algorithm

4.1 Algorithm structure

The algorithm realized in this work for the dar problem resolution is based on
three elements: two constructive heuristics, used for the initial solution gen-
eration, and a metaheuristic. The heuristics are a simple insertion procedure
and an algorithm for the resolution of an assignment problem obtained from
a relaxation of the original dar problem [1][18]. A tabu search metaheuristic
was chosen for the solution optimization since it is one of the most effective
algorithms used for vehicle routing and scheduling problems [19][38][35]; in
particular a granular version was realized [38][49].

As shown in Figure 10, three functionalities have been obtained using these
elements: the initial solution generation, the neighborhood definition for
the granular tabu search and the optimization system. Both the static and
dynamic version of the dar problem can be solved combining these three
functionalities in different ways.

In the off-line version of the algorithm only one execution of each func-
tionality is needed as the customers demand is completely known when the
process starts. On the contrary, a strategy like the single event optimiza-
tion (described in 2.3) has been chosen for the on-line version; thus in this
case the three functionalities are executed many times, one for each static
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sub-problem.

One of this work’s objectives is to realize an optimization system able to
produce good results within short time so that it can be used in both off-line
and on-line6 algorithms. For this reason the granular tabu search has been
chosen: this method is based on using a drastically restricted neighborhood
obtained from the standard one by removing the moves that involve only
elements which are not likely to belong to high-quality feasible solutions. In
this way few moves have to be evaluated during each tabu search iteration
so the research is quite fast.

4.2 The initial solution

4.2.1 Insertion procedure

A fast insertion procedure has been realized to answer customer in real time.
The procedure selects the first feasible insertion position for each request: this
allows to answer instantaneously to the customer, but disregards completely
any optimization phase.

The insertion procedure can also be used in the off-line algorithm.

4.2.2 Assignment heuristic

This heuristic provides the main information required for the definition of
the granular neighborhood used by tabu search; moreover it can be used to
create an initial solution of the problem.

The method can be divided into four steps:

1. an auxiliary graph smaller and simpler than the one defined in 3.1 is
built;

2. the graph is completed adding some information regarding the vehicles
used;

3. an assignment problem is defined on this graph and solved;

4. the resulting unfeasible paths are made feasible for the original dar
problem.

6The optimization is performed during the time period between couples of request
arrivals.
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Figure 11: Possible paths to go directly from customer i to customer j.

The auxiliary graph Let G
(
U, Ā

)
be a directed auxiliary graph. U is

the set of requests; the set of arcs is defined as Ā = {(i, j) : i, j ∈ U, i 6= j}.
Each arc (i, j) ∈ Ā has associated an ad-hoc coefficient p̄i,j. The purpose
of the value p̄i,j is to measure the spatial and temporal distance between
customer i and customer j. The value p̄i,j sums up most of the information
necessary to evaluate the feasibility and the cost of any possible path to go
directly from customer i to customer j, starting with node i+: {i+, i−, j+, j−},
{i+, j+, i−, j−} and {i+, j+, j−, i−}, as shown in Figure 11.

To compute p̄i,j constraints (7) and (8) are used; they says that, considering
two nodes i and j in N , the departure time from j is pj = max {pi + ti,j, ej}.
When the sequence is made by only two nodes, the equation becomes pj =
max {ei + ti,j , ej} = ei + ti,j + w̃i,j where w̃i,j = max {0, ej − ei − ti,j} is the
waiting time at node j.

For a generic sequence of s nodes Π = {π1, . . . , πs}, the departure time in
node s can be determined using the following equation:

pπs
= pπ1 + Tπ1,πs

+Wπ1,πs
(20)

where Tπ1,πs
is the total travel time along the sequence and Wπ1,πs

is the total
waiting time. Applying this equation to the sequence shown in Figure 11,
the following values can be determined:





p1
j−

= ei+ + ti+,i− + ti−,j+ + tj+,j− + wj+

p2
j−

= ei+ + ti+,j+ + tj+,i− + ti−,j− + wj+

p3
i−

= ei+ + ti+,j+ + tj+,j− + tj−,i− + wj+

(21)

Thanks to the time windows computation procedure described in 3.2, there
is only one possible waiting time, i.e. wj+ in node j+.

Then, the coefficient p̄i,j can be defined as

p̄i,j =

∑3
r=1 p

rkr∑3
r=1 kr

(22)
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where kr = 1 if pr 6= ∞, kr = 0 otherwise. Of course, when
∑3

r=1 kr = 0
the procedure sets p̄i,j =∞: there are no feasible ways to go from customer
i to customer j. The value p̄j,i is defined in the same way and in general
p̄i,j 6= p̄j,i.

The vehicles lower bound To make the solution of the assignment prob-
lem effective, it is necessary to enlarge the auxiliary graph with a minimum
number of vehicles required to satisfy the requests. A lower bound of this
number is computed using the concept of incompatibility between request i
and request j. Customers i and j are incompatible if they cannot be loaded
by the same vehicle without breaking any time constraint. Capacity con-
straints can be ignored since usually qi ¿ Q for each i ∈ U . Formally two
requests are not compatible if p̄i,j = p̄j,i =∞.

Then, let G = (U, I) denotate the incompatibility graph: U is the set of re-
quests, while the set of arcs is defined as I = {(i, j) : i, j ∈ U, p̄i,j =∞∧ p̄j,i =∞}.
The vehicles lower bound m is given by the dimension of the maximal clique
on this graph; if the lower bound is greater than the fleet size |M |, m is set
equal to |M |.

The assignment problem Given the complete graph G(Û , Â), where the

set of nodes is Û = {−m. . . 0} ∪U , while Â =
{
(i, j) : i, j ∈ Û , i 6= j

}
is the

set of arcs and each arc (i, j) has associated a cost function p̄i,j, it is possible
to show that the assignment problem is a useful relaxation of the dar prob-
lem. Indeed, the constraints involving time windows, namely constraints (7)
and (8), can be relaxed, since they are used to calculate p̄i,j. Constraints
(3) and (9) are useless in this graph, since it does not consider the origin
and destination points of requests. Constraints (4), (5) and (6), ensuring
the feasibility of loads, are discarded without taking care of them and the
feasibility of the solution obtained is verified in a second step. In changing
the constraints (1) and (2), the problem to solve becomes

min
∑

(i,j)∈Â

p̄i,jxi,j (23)

s.t.
∑

j∈Û

xi,j = 1 ∀i ∈ Û (24a)

∑

j∈Û

xj,i = 1 ∀i ∈ Û (24b)

xi,j ∈ {0, 1} ∀ (i, j) ∈ Â (24c)
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Usually the assignment problem is not an interesting relaxation of routing
problems. The obtained solution consists of m sequences of customers con-
taining the depot and other cycles composed only by requests. These cycles,
called subtours, are not feasible for both routing and routing and scheduling
problems. However in this case solutions contain few subtours thanks to the
subtour elimination constraints (4) and (7) and the definition of equation
(22), which considers these constraints.

Make feasible an unfeasible path In order to obtain a solution for the
dar problem, it is necessary to deal with the subtours and to make each
one of the m paths (each of them connecting customers close together both
temporally and spatially) a feasible route, i.e a sequence of pick-up and de-
livery nodes. The procedure adopted does not take care of subtours. Thus,
it is sufficient to transform the solution of the assignment problem for each
vehicle in a feasible route. Two procedures have been realized:

• Trivial : the requests are processed one by one in the same order as
they are in the sequence; the procedure puts the couple of origin and
destination nodes of each request immediately after the last node in-
serted into the route. Then it checks if any constraint is break and in
that case the last inserted request is discarded.

• Smart : this procedure starts with a route equal to the sequence of
pickup and delivery nodes produced by the assignment resolution pro-
cedure. The route cost is evaluated considering the total travel time
and adding infinite each time a constraint is break. Then the pro-
cedure tries all the possible insertion positions of every destination
node: if there isn’t any feasible insertion position the whole request
is discarded, instead if one or more are found the one leading to the
minimum cost solution is selected.

After this process the initial solution generation is completed using the inser-
tion procedure described in 4.2.1 to deal with the subtours and the requests
discarded by one of the procedures just described. The whole fleet can be
exploited during this process.

4.3 Granular Tabu Search

As said in 4.1, one of this work’s main objectives was to choose a metaheuris-
tic able to produce good results within short time. The details of the used
technique are described as follows.
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4.3.1 The solution space

The neighborhood N(s) of the current solution s consists of all the solutions
that can be obtained applying a single move to s. This space includes only
feasible solutions; the possible moves are:

• removal of a request from a route and insertion into another route,
choosing the best insertion position of both origin and destination
points;

• insertion of a yet unserviced request into a route, choosing the best
insertion position of both origin and destination points;

• removal of a request form a route; that request becomes unserviced.

More complex transformations can be achieved through sequences of the
described simple moves.

During each iteration, the tabu search procedure selects the best solution
contained in N(s); both improving and worsening7 solutions are allowed.

4.4 The granular neighborhood structure

Considering the moves just defined, the neighborhood can be described using
a directed graph G(U, Ã): U is the set of requests, while Ã is the set of arcs
connecting two requests serviced by different vehicles or a serviced request
and an unserviced request. Figure 12 shows an example of this graph, with
requests 1, 2 and 3 serviced by a vehicle and requests 4, 5 and 6 serviced by
another one.

Each arc of the graph defines two moves: the first one requires the arc tail
node request to be moved, the second one the arc head node request. Con-
sider for example the arc (4, 2) and suppose that requests 4 and 2 are serviced
by different vehicles: Figure 13 shows how the tail node request 4 is moved
to the route request 2 belongs to. The insertion positions for node 4+ depend
on the arc direction: 4+ can be inserted only before 2+. Figure 14 instead
shows how the head node request 2 is moved to the route of request 4. In
this case the arc direction states that 2+ has to be inserted after 4+. Fig-
ures 15 and 16 show two examples of the remaining moves, when request 2
is unserviced.

7In comparison with the objective function values of the current solution and of the
best solution found so far.
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Figure 12: An example of graph G(U, Ã)
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Figure 13: The tail node request 4 of arc (4, 2) is moved to the route of the
head node request 2
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Figure 14: The head node request 2 of arc (4, 2) is moved to the route of the
tail node request 4
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Figure 15: The tail node request 4 of arc (4, 2) becomes unserviced
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Figure 16: The head node request 2 of arc (4, 2) is moved to the route of the
tail node request 4 and thus becomes serviced

Each iteration of the tabu search optimization process requires the evaluation
of the moves deriving from all the arcs of the neighborhood graph G(U, Ã).
The granular tabu search method is based on using a drastically restricted
neighborhood: the information required to obtain a sparse neighborhood
graph removing some moves comes from the assignment heuristic described
in 4.2.2.

4.4.1 Reduced costs

The neighborhood graph G(U, Ã) has been simplified considering the arc
reduced costs.

Let a = n+m be the size of the assignment problem, where n is the number
of requests and m is the vehicles lower bound. Given the solution of the
assignment problem, the reduced cost of each arc (i, j) is equal to c̄i,j =
p̄i,j − ui − vj where ui and vj are the dual variables of the assignment dual
problem. The solution basis8 consists of 2a− 1 variables since the number of
constraints of the assignment problem (shown in 4.2.2) is equal to 2a and it

8A variable belongs to the basis if its reduced cost is equal to 0.
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can be proved that they are not all linear independent [50].

This means that three kinds of arc can be determined:

• a arcs with reduced cost equal to 0 and whose variables define the
solution (xi,j = 1);

• a − 1 arcs with reduced cost equal to 0 and whose variables do not
belong to the solution (xi,j = 0);

• the remaining arcs with c̄i,j ≥ 0; their reduced costs depend on the
dual variables ui and vj and vary between 0 and almost infinite.

The second group arcs have a good cost p̄i,j but they do not belong to the
assignment problem solution since their introduction would require the in-
sertion of positive cost arcs. However we are not interested only in the
assignment problem resolution. In fact arcs with low reduced cost values
connect requests that are close together both temporally and spatially, since
c̄i,j depends on p̄i,j ; thus it would be a good idea to serve these requests with
the same vehicle in the dar problem.

For this reason, the weight of each arc (i, j) of graph G(U, Ã) is equal to its
reduced cost c̄i,j ; then all the arcs having weight greater than a granularity
threshold are discarded. The threshold starting value is 0, but it can be
modified in order to obtain the diversification and intensification strategies
described in 4.6.

This technique reduces the neighborhood size and thus speeds up the research
process since less moves need to be evaluated during each iteration. Results
reported in Section 5 show that the neighborhood reduction process does not
affect in a significant way the solutions quality.

4.5 Tabu list and aspiration criteria

The tabu search heuristic uses a short term memory [51][50] to avoid cycling
and the stopping of the research process in local minimums. At each iteration
the move opposite to the one being executed is declared tabu. That move
will be forbidden for a given number of iterations (tabu tenure) [34] so that
the executed solution transformation can’t be immediately undone.

In this work moves have been saved using the arcs they involve: in Figure 17
the arcs being saved after the removal of request 2 from its route are marked
with bold arrows. The arcs directly connecting nodes to depot or the origin
and destination points of the same request are not considered as they do not
indicate the move in an univocal way.
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Figure 17: Arcs saved into the tabu list

The moves involving only tabu arcs at the current iteration can’t be executed
except if they lead to a solution whose objective function value is better than
the best one found so far: this is called aspiration criterion.

4.6 Diversification and intensification

Intensification and diversification techniques are used to improve the effec-
tiveness of the ts method [34]. Intensification tries to focus the research
on promising portions of the solution space, while diversification moves it
to other ones trying to make up for the local research drawbacks. Three
techniques have been used in this work:

Tabu tenure dynamic variation The tabu tenure value can be constant
or can vary according to several strategies [34][49]. We based this variation on
the objective function evolution. If improving moves have been executed for a
consecutive pre-defined number of iterations, the research process is probably
analyzing an interesting portion of the solution space, thus intensification
is required and the tabu tenure value is reduced. On the contrary, if the
objective function value has not been improved for some iterations, may be
the research process has reached a local minimum, thus diversification is
required and the tabu tenure value is increased.

Frequency-based penalization This technique uses a long term memory
to save the frequency of addition of arcs to the current solution. For example
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Figure 18: Arcs to be saved when a move is executed.

consider this move: the request 4 is taken out of route 2 and inserted into
route 1; Figure 18 shows which arcs are saved, e.g. (2+, 4+), (4+, 2−), (3+, 4−)
e (4−, 1−).

Let s be the current solution; each solution s̄ ∈ N(s) such that f(s̄) > f(s) is
penalized by a factor p (s) = λρ

√
nmf (s̄), where ρ is the mean value of the

number of times each considered arc has been added to the current solution,
λ is a parameter used to control the intensity of the diversification and

√
nm

is a scaling factor required to adjust the penalties with respect to the problem
size9. This strategy has been proposed by Taillard [52] and successfully used
in many other tabu search applied to the vehicle routing, for example in [37].

Granularity threshold variation The granularization process naturally
produces a research intensification since few moves are evaluated during each
iteration. However three diversification strategies can also be defined varying
the granularity threshold and thus dynamically changing the structure of the
sparse graph associated to the granular neighborhood.

• At each iteration, if the algorithm can not find any feasible solution,
the granular graph is enlarged considering arcs with a positive, but still
small, reduced cost (the granularity threshold is increased). Whenever
the algorithm improves the best solution found so far, the sparse graph
becomes small again.

• If the algorithm is unable to improve the best solution found so far for
a fixed number of iterations, the granular graph is enlarged consider-
ing arcs with a positive, but still small, reduced cost (the granularity
threshold is increased). Whenever the algorithm improves the current
solution, the sparse graph becomes small again.

• If the algorithm is unable to improve the best solution found so far for
a fixed number of iterations, the granular graph is enlarged consider-

9n is the number of requests to be served and m is the fleet size.
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ing arcs with a positive, but still small, reduced cost (the granularity
threshold is increased). Whenever the algorithm improves the best
solution found so far, the sparse graph becomes small again.

These techniques allowed us to define three versions of the algorithm: gtsf
uses only the first technique, gtsvc exploits the first one and the second
one, finally gtsvo uses the first one and the last one. These algorithm’s
versions produce different quality solutions within different times, as shown
in Section 5.

4.7 Stopping criteria

Two stopping criteria have been defined for the off-line algorithm: the op-
timization process is stopped after a fixed number of iterations or after a
fixed number of iterations without any improvement of the best solution’s
objective function.

The stopping criterion for the on-line algorithm is obtained as the minimal
value between a fixed cpu time and the distance among two consecutive
request arrivals.

4.8 Conclusions

As said in 4.1, the described optimization system can be applied to both
static and dynamic dar problems. In the first case, the whole structure of
the algorithm is the one shown in Figure 19.

The structure of the on-line algorithm is shown in Figure 20: the optimiza-
tion process has to be stopped and then started again every time a new
request arrival occurs. Moreover some devices have been used to deal with
the real-time context:

• During each iteration the optimization process considers only the un-
blocked requests. A request is blocked if its earliest pick-up time is
prior to the current time plus a time interval used as margin of safety
and necessary to transmit paths to the vehicle drivers.

• The optimization process runs only if a fixed number of unblocked re-
quests is reached; as a matter of fact during the earliest and latest hours
of the service time there are few unblocked requests to be processed,
so no improvements to the current solution are usually possible.
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• Every solution must serve all the customers in the on-line case; this
means that the only admitted transformations between solutions are
those that move a request from a route to another one.

Both off-line and on-line algorithms can also be used in time-dependent
conditions making use of the minimum travel time paths algorithms described
in 3.3.3.

5 Computational results

This section explains how the described algorithm has been tested and ana-
lyzes the obtained results.

Both off-line and on-line algorithms have been tested, considering non time-
dependent and time-dependent networks. Moreover the use of different di-
versification strategies based on the granularity threshold variation allowed
us to test 3 versions of the algorithm (gtsf, gtsvc and gtsvo, see 4.6 for
further details) and to compare them with a ts algorithm.

5.1 Data generation

To the authors knowledge, there are no benchmark instances for the dar
problem. The data set has been created using the complete network of Mi-
lan (about 1700 arcs and 7000 nodes); the set of random instances has been
generated extracting casually a pair of nodes for each customer. Each cus-
tomer requires either the arrival time or the departure time and that value
is generated randomly in a time interval of 10 hours. Time windows are
constructed as described in 3.2, considering the maxlos function shown in
Figure 21 and given by:

maxlos (t) =





dv
vc + (1 + α) if t < vc
dv
t

+ (1 + α) if vc ≤ t < vl
dv
vl + (1 + α) if t ≥ vl

(25)

where t is the direct travel time from the pick-up to the delivery point.

Two minimum levels of service have been considered: a low-quality level of
service, obtained using the parameters shown in Table 1, and a high-quality
level of service, obtained using the parameters shown in Table 2. A mwt
equal to 1000 seconds has been used for every test.

Almost all the tests has been performed using instances consisting of 100,
250 and 500 requests. A fleet size suitable to each size of instances has been
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Figure 21: MaxLoS function

Parameter Value

dv 1000

alpha 0,5

vc (s) 600

vl (s) 2400

Table 1: Maxlos parameters for a low-quality level of service.

Parameter Value

dv 900

alpha 0,0

vc (s) 600

vl (s) 2400

Table 2: Maxlos parameters for a high-quality level of service.
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Start time End time Speed (km/h)

7.00 10.00 20

10.00 12.00 25

12.00 17.00 28

Table 3: Time intervals

Procedure Requests Unserved req. Average los Vehicles Time (s)

trivial 100 5,0% 0,31671 6,0 0,097
smart 100 3,4% 0,36769 6,0 0,100
insertion 100 5,0% 0,43142 6,0 0,147

trivial 250 6,6% 0,43450 12,0 0,825
smart 250 4,0% 0,45249 12,0 0,922
insertion 250 6,5% 0,48148 12,0 0,897

trivial 500 13,5% 0,49094 20,0 4,628
smart 500 11,9% 0,49976 20,0 4,741
insertion 500 13,4% 0,50547 20,0 4,890

Table 4: Initial solutions analysis: results with a non time-dependent net-
work.

determined through some preliminary tests: the algorithm was allowed to
use as many vehicles as it needed to serve all the customers. In this way the
required fleet size has been estimated and we decided to use 6, 12 and 20
vehicles to serve 100, 250 and 500 requests respectively.

The speed over the non time-dependent network used in all the tests is 25
km/h. Time-dependent network, instead, has been described considering 3
time intervals whose data are shown in Table 3.

The machine used to solve the problems is an AMD Athlon XP 2100+
with 512MB of ram.

5.2 Initial solutions analysis

The aim of the first test phase was to decide which of the procedures described
in 4.2 gives the best initial solution in terms of quality (number of served
requests and offered level of service) and required computing time.

Tables 4 and 5 present the obtained results in non time-dependent and time-
dependent conditions respectively. Smart (Trivial) refers to the assignment
heuristic followed by the smart (trivial) procedure to obtain feasible paths.

The smart-assignment procedure proves to be the best technique since it al-
ways allows the algorithm to serve more customers than the other techniques
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Procedure Requests Unserved req. Average los Vehicles Time (s)

trivial 100 3,8% 0,31708 6,0 4,609
smart 100 2,6% 0,38346 6,0 4,581
insertion 100 5,0% 0,42595 6,0 5,922

trivial 250 6,7% 0,42050 12,0 25,503
smart 250 4,9% 0,44249 12,0 25,753
insertion 250 7,4% 0,48108 12,0 32,372

trivial 500 14,2% 0,46808 20,0 123,759
smart 500 11,0% 0,48898 20,0 116,840
insertion 500 13,8% 0,51562 20,0 128,000

Table 5: Initial solutions analysis: results with a time-dependent network.

do. Moreover the computing time required by the assignment procedure
is less than the one the insertion procedure needs, especially in the time-
dependent case. As expected, the insertion procedure produces solutions
with a bad (high) average los value, since no optimization is performed and
each request is inserted into a route at the first feasible position.

Finally time-dependent problems require more time to be solved than non
time-dependent ones due to the high complexity of the shortest path algo-
rithms frequently used in time-dependent conditions.

5.3 Optimization algorithms analysis

The aim of the second test phase was to evaluate the performance and quality
of results produced by the different versions of the optimization algorithm
(gtsf, gtsvc and gtsvo).

Table 6 shows the results obtained after 2500 tabu search iterations with a
non time-dependent network, while Table 7 shows the results obtained after
1000 iterations in time-dependent conditions.

The optimization process considerably improved the solution quality. Every
optimization algorithm succeeded in serving much more requests than the
initial solutions do, while providing a better level of service to the customers.
The number of vehicles did not change as there was always at least one
unserviced request so the whole fleet was always required.

ts and gtsvo produce better solutions but are very slow. gtsf and gtsvc,
instead, generate very good solutions (whose quality is almost equal to that
of the solution produced by more complex algorithms) within modest com-
puting times. In particular the gtsvc version of the algorithm is the best
compromise between efficiency and effectiveness.
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Algorithm Requests Unserved req. Average los Vehicles Time (s)

initial sol. 100 3,4% 0,36769 6 0,097

gtsf 100 0,4% 0,19034 6 40,616
gtsvc 100 0,2% 0,16928 6 63,956
gtsvo 100 0,2% 0,16875 6 652,762
ts 100 0,2% 0,16862 6 1092,071

initial sol. 250 4,0% 0,45250 12 0,922

gtsf 250 1,0% 0,23460 12 107,678
gtsvc 250 0,4% 0,19336 12 218,585
gtsvo 250 0,3% 0,16494 12 2648,395
ts 250 0,4% 0,18535 12 6469,919

Table 6: Optimization algorithms analysis: results with a non time-
dependent network.

Algorithm Requests Unserved req. Average los Vehicles Time (s)

initial sol. 100 2,6% 0,38346 6,0 4,328

gtsf 100 0,6% 0,18165 6,0 197,341
gtsvc 100 0,4% 0,17711 6,0 1209,111
gtsvo 100 0,4% 0,16084 6,0 10986,608

initial sol. 250 4,9% 0,44249 12,0 22,450

gtsf 250 1,6% 0,24035 12,0 366,703
gtsvc 250 1,5% 0,20855 12,0 4798,447
gtsvo 250 1,6% 0,18429 12,0 22522,980

Table 7: Optimization algorithms analysis: results with a time-dependent
network.
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Algorithm Requests Unserved req. Average los Vehicles

on-line 99,6 15,3% 0,34567 6
off-line (gtsvc) 99,6 10,7% 0,29464 6

on-line 236,0 19,9% 0,34814 12
off-line (gtsvc) 236,0 18,7% 0,30638 12

on-line 479,2 23,8% 0,40306 20
off-line (gtsvc) 479,2 18,1% 0,33596 20

Table 8: Comparison between results obtained by the on-line and off-line
algorithms.

As said in 5.2, time-dependent problems are more complex and require more
time to be solved.

5.4 On-line algorithm analysis

The aim of the last test phase was to evaluate the performance of the on-
line system. Real-time context requires fast optimization procedures, so
the optimization algorithm used was the gtsvc since it proved to be both
effective and efficient.

The set of instances has been generated through a Poisson process[53] con-
sidering three arrival frequencies:

• 1 request every 5,4 minutes (100 requests during the whole service
time);

• 1 request every 2,2 minutes (250 requests during the whole service
time);

• 1 request every 1,1 minutes (500 requests during the whole service
time).

The on-line algorithm has been evaluated comparing its results with the ones
produced by the off-line version running on the same data set. Table 8 shows
the collected results: the off-line algorithm generates better solutions. This
can be explained considering that the on-line optimization process is stopped
every time a new request arrival occurs; moreover the customers demand is
not completely known during the process and some request are blocked, thus
the on-line problem is much more difficult to solve than the off-line one.
Nevertheless the difference between the two algorithms’ results in terms of
unserved requests is always less than 6%.
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Finally we evaluated the system response time that is the time required to
tell each customer if his request has been accepted or rejected. Considering
non time-dependent conditions and the maximum arrival frequency described
above, the average response time was less than 5 seconds, thus the system
can be used in a real-time context.

5.5 Conclusions

In this work some algorithms to solve both the off-line and on-line versions
of the Dial a Ride have been proposed. The use of a granular tabu search
metaheuristic applied to the dar problem for the first time allowed us to
design an algorithm both effective and efficient. The computational results
proved the algorithm good performances and that it will be possible to use
the algorithm for practical applications in a real context.
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